Metal cofactors of lysine-2,3-aminomutase.

نویسندگان

  • R M Petrovich
  • F J Ruzicka
  • G H Reed
  • P A Frey
چکیده

Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-adenosylmethionine: a 'poor man's coenzyme B12' in the reaction of lysine 2,3-aminomutase.

S-Adenosylmethionine (SAM) and an iron-sulphur centre function in place of adenosylcobalamin. Because of its coenzyme BJike role in this reaction, SAM was originally described by H. A. Barker as ‘A poor man’s adenosylcobalamin’ [4]. The conversion of lysine into P-lysine by lysine 2,3-aminomutase proceeds without exchange of solvent protons with substrate hydrogen, and by the stereochemistry il...

متن کامل

A novel lysine 2,3-aminomutase encoded by the yodO gene of bacillus subtilis: characterization and the observation of organic radical intermediates.

The yodO gene product of Bacillus subtilis has been cloned and overexpressed in Escherichia coli and purified. The nucleotide sequence encodes a protein of 471 amino acids with a calculated molecular mass of 54071 Da. The translated amino acid sequence is more than 60% identical to that of the lysine 2,3-aminomutase from Clostridium subterminale SB4. Analytical HPLC gel-permeation chromatograph...

متن کامل

The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale.

The x-ray crystal structure of the pyridoxal-5'-phosphate (PLP), S-adenosyl-L-methionine (SAM), and [4Fe-4S]-dependent lysine-2,3-aminomutase (LAM) of Clostridium subterminale has been solved to 2.1-A resolution by single-wavelength anomalous dispersion methods on a L-selenomethionine-substituted complex of LAM with [4Fe-4S]2+, PLP, SAM, and L-alpha-lysine, a very close analog of the active Mic...

متن کامل

Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5, 6-aminomutase from Clostridium sticklandii.

D-Lysine 5,6-aminomutase from Clostridium sticklandii catalyzes the 1,2-shift of the epsilon-amino group of D-lysine and reverse migration of C5(H). The two genes encoding 5,6-aminomutase have been cloned, sequenced, and expressed in Escherchia coli. They are adjacent on the Clostridial chromosome and encode polypeptides of 57. 3 and 29.2 kilodaltons. The predicted amino acid sequence includes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 12  شماره 

صفحات  -

تاریخ انتشار 1991